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Invariants of the triangular shell element stiffness matrices are examined. The 
stiffness matrix is considered as the sum of membrane bending and transverse 
shear stiffness matrices representing respective strain energies. For various 
geometries and curvatures, eigenvalues of these matrices are obtained numeri- 
cally. By studying the eigenvalues, it is shown that stiffness matrices produced 
with the help of equilibrium requirements may display nonpositive behavior 
depending upon element geometry. The grave consequences of nonpositive 
behavior are demonstrated. Since equilibrium algorithms can be used to accel- 
erate the convergence, two schemes are developed to correct the nonpositive 
behavior. These schemes are based on the observation that nonpositive behavior 
originates from the base matrix to which equilibrium algorithm is applied. The 
effect of thicknesdarea ratio on the overall behavior is studied. The behavior 
associated with true potential energy approach is demonstrated on several test 
cases. The effect of geometry is also discussed in the assembled matrix. Guide- 
lines have been presented for the use of the triangular shell element in structural 
analyses. 
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Behavior of Triangular Shell Element Stiffness Matrices 
Associated with Polyhedral Def Iection Distrib wtions" 

1. lnfroducfion 

The finite element representations for thin structures 
have been developed parallel to the variety of the most 
used middle surface geometries. Axially symmetric finite 
elements for shells of revolution and polygonal finite ele- 
ments for plates and shells of arbitrary geometry have 
been used. Rings, conical elements, and elements which 
are obtained by cutting the shell along its parallels have 
been considered for shells of revolution. Polygonal ele- 
ments have been mostly either triangular or quadrilateral 
in shape, and generally proposed for stretching and/or 
bending of plates. 

The deflection fields used during the derivation of ele- 
mental stiffness matrices show more diversity than the 
element shapes. For plates and shells of arbitrary geom- 
etry, mostly piecewise Iinear, quadratic and cubic fields 
have been considered. Since not all of these fields are 
admissible for the solution of extremum formulation of the 
equilibrium problems of thin structures, the detailed be- 
haviors of many available representations are unknown, 

*This report was first presented at the AIAA 5th Aerospace Sei- 
ences Meeting, New York, January 1967, Paper 67-114. 

in addition to the fact that most of them are theoretically 
unacceptable. 

Comparatively little work has been reported on the 
polygonal element representation of shells of arbitrary 
geometry for which elements with axial symmetry cannot 
be used. Melosh (Ref. 1) has presented a flat triangular 
element representation for plates and shells of arbitrary 
geometry. Utku (Ref. 2)) starting from the shallow shell 
theory, developed stiffness matrices to include curvatures 
in the element. These matrices reduce to a slightly differ- 
ent version of the flat element stiffness matrix of Melosh 
when the curvatures in the element vanish. Since these 
authors have considered only polyhedral deflection dis- 
tributions, the fields, being piecewise linear, are admissible 
for the solutions. However, a detailed examination of the 
behavior of these representations has not been made. 

It is the purpose of this paper to review the basis of the 
triangular shell element representations given in Refs. 1 
and 2, to examine their behavior by studying their intrin- 
sic characteristics as a function of element geometry, and 
to illustrate the fact that solutions with the triangular 
shell element indeed yield a minimizing sequence for total 
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potential energy (or a maximizing sequence for total strain 
energy) with grid refinement, and that the sequence is 
actually of the monotonically converging type. 

The following section of this paper provides the deri- 
vation of the several stiffness matrices of triangular shell 
element. The third section examines the characteristics of 
these matrices as a function of the geometry of element. 
The fourth section evaluates means of improving the rep- 
resentations in case of nonpositive behavior. The fifth 
section correlates the theoretically developed conclusions 
with the effect of improvements in the solution problems. 
The sixth section discusses a best representation and illus- 
trates, in some sample problems, the minimizing sequences 
for total potential energy as obtained with this element. 
The seventh section presents some guidelines the analyst 
should follow to use the triangular shell element to best 
advantage in numerical anaIyses. The eighth section dis- 
cusses how curvatures are accounted for in the element 
representation. The final section summarizes the signifi- 
cant developments presented. 

I I .  Review of Derivation 

The derivation (Ref. 2) of the elemental stiffness matri- 
ces is summarized below. The triangulation of the middle 
surface and a triangular shell element are shown in Fig. 1. 
The right-handed coordinate system(xyz) is located at the 
centroid of base triaagle 123 such that the x- and y-axes 

are coincident with its principal axes of moment of inertia, 
and the z-axis is such that an observer along it sees the 
node labels 1, 2, and 3 increasing in module 3 in the 
counterclockwise direction. The base triangle is obtained 
by joining the nodes 1, 2, and 3 with straight lines. Let 
UM, UB, and U ,  represent membrane, bending, and trans- 
verse shear strain energies of the element. Then the ele- 
mental total strain energy U may be written as 

Designating the thickness as t, the area of the element 
as A, middle surface strains as [E~] = [ Q ~ ~ , ~ E ~ ~ ~ ] ,  changes 
in curvatures as [XI = [ XxXYX2Y], transverse shear strains 
as [y] = [yszyYz], and material matrices (3 X 3 and 2 X 2 
matrices relating [E~] and [y] with the associated stresses) 
as [D] and [D’], and using the Kirchhoff assumptions that 
no normal stress develops across thickness and strains on 
planes parallel to the tangent planes of middle surface 
vary linearly across thickness, one can write: 

In (4), it is assumed that {y} is constant across thickness. 

Let q and 8 represent the displacement and the rotation 
vectors of middIe surface points and normals at these 
points, respectively. The components of q and 8 are de- 
defined as 

q = ui + vj + wk (5)  
3 

8 = 0,i + e,j (6) I 

Y 

where i, j, and k are the unit vectors of coordinate axes. 
Expressing the undeformed middle surface with z = z ( x , ~ ) ,  
and using the shallow shell theory (Ref. 3), one writes 

X 2 

u,x + z,xw,x 
{En) = va + zawa I Y Y  + v,x + z,xw,v + z,,w,x 

( b )  

Fig. 1. Triangulation on middle surface and a 
triangular curved element 
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(A comma in the subscript indicates partial differentiation 
with respect to the quantity or quantities following the 
comma.) 

where [u'] = [u1u2u3], [v'] = [v1v2v3], [w'] = [wlw2w3], 
[ e,'] = [ 6x,6x26x3], [ eg = [8,,6,,6,,], dotted lines are par- 
titioning lines, and 

One can express U, approximately, by assuming an 
approximate deflection distribution in the triangular sub- 
domain in terms of some undetermined parameters. In 
order to assure a maximizing sequence for U, with grid 
refinement on the middle surface, a polyhedral deflection 
distribution may be assumed (Ref. 4). This implies that 
the undetermined parameters are the nodal values of 
deflection components u, v, w, ex, and 6, and that they vary 
linearly in any triangular subdomain. 

where A is the area of the base triangle, ui, vi,  wi, &i, and 
eYi, are the deflection components at the ith node, x i j  = xi 
- x j ,  yij = yi - yj, ri = x i + , ~ i + ~  - ~ i + ~ y i + ~  (subscripts are 
in module 3), and x and y are the coordinates of a point in 
the base triangle. Using (10) in (7), (8), and (9), one obtains 

U 

1 
2A {EO} G - [M N! z,,M + z,,N] 

1 
2A {X} =-[-N {MI 
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. [LI = [ ::: y31 ] (14) 
x13 

Assuming that the undeformed middle surface may be 
described approximately with a quadratic surface, one 
may write 

(15) = al(x - xo)  + a2(y - yo) 

where x, and yo are the coordinates of middle surface 
point 0, (Fig. lb), whose tangent plane is parallel to the 
base triangle (zo is the z coordinate of this point), al and 
a3 are the average normal curvatures in the x and y direc- 
tions, and .a2 is the average cross-curvature of the middle 
surface. Note that a,, a2 and a3 can be uniquely defined if 
nodes 1, 2, 3 and point OH are given. 

Substituting (15) and (16) into (l l) ,  and (11), (12), and 
(13) into (2), (3), and (4), one obtains, after integration, 



whereEd”] = [u’ V* wT e: e;], and [KM], [KJ, and 
[K,] are as follows 

t3 
[KBI = 48A 

where 

[SI11 = [LTI[W[LI 

[WZlI = - [ ;;* ~ [LI 

[W311= [ ds,, :.1 ELI 

[ W l =  lx; :] 

0 0 

(234 

I,/A 0 0 

- 

and 

a = -xoal - yoa2 

b = -xoa2 - y0a3 

c = (x i  + I,/A)af + ( y i  + Z,/A)a: 

+ xoyoalaz 

d = (yi + Ix/A)a2, + (x: + I,/A)a; (24) 

f x0yOa2a3 

e = ( x i  + I,/A)a,a, + (y: + Z,/A)a2a3 

+ x0y0(a1a3 + .ai) 

where [O] represents the zero matrix of order 3, 1, and 
I ,  are the principal moments of inertia of the base tri- 
angle, and ail, and d;,  are the elements of [D’]. 

Since the second deflection derivatives of U give the 
elemental stiffness matrix, one can write 

[KI = [KHI + [Knl+ [&I 

where [KM], [KB], and [K,] are elemental membrane, 
bending, and transverse shear stigness matrices and are 
defined by (20), (21), and (22). 

(W 

It has been demonstrated (Ref. 1) that [K,] causes a 
maximizing sequence of extremely slow convergence 
with grid refinement, and the columns of [KM], in gen- 
eral, only approximately satisfy the moment equilibrium 
requirements (Ref. 2), although the force equilibrium 
requirements are satisfied exactly. (This can be seen 
readily from (14) and (23) by noting that row sums of 
[MI and [N], and, consequently, [PI, [Q], and [R], are 
zero.) 
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The undesirable behavior of [Ks] originates from the 
fact that the linear variation of w is not compatible with 
the linear variations of 0, and 0, for large grid sizes. To 
accelerate the convergence it has been proposed (Ref. 1) 
to replace (22) with the sum of transverse shear stiffness 
matrices of hypothetical spar beams at the periphery of 
the element, the rigidities of which are adjusted such 
that when the base triangle is a right triangle the third 
submatrix on the diagonal becomes identical with that 
of (22). This proposal will be examined closely in Sec- 
tion IV. 

Another proposal (Ref. 2) for rapid convergence is to 
ignore the contributions of e,: and ey to {y} in (13) before 
integrating and differentiating Us, (4), which leads to 

where 

Since row sums of [L] are zero (see 14), the row sums of 
[S,,] ark also zero, which implies that the columns of 
[Kk,] satisfy the force equilibrium requirements. How- 
ever, they do not satisfy the moment equilibrium require- 
ments. The contributions of & and By may now be taken 
into account to satisfy the moment equilibrium require- 
ments. This can be achieved by computing the unbalanced 
moments for each column of (26), starting from the 7th, 
and then distributing as suggested in Ref. (2), using the 
procedure called “equilibrium algorithm.” This procedure 
leads to 

t 
[K,11 = 4A 

The explicit expressions for the elements of [Sij] sub- 
matrices may be obtained as follows. Let [f], [*], and 
[my] stand for the third, the fourth, and the fifth subma- 
trices, respectively, of any column of (28). The elements of 
[mz] and [my] may be expressed explicitly as 

where the range of i and i is from 1 to 3, subscripts may 
take integer values of module 3, and 6,j is the Kronecker 
delta. Matrix [K,,] as given by (28) and (29) does satisfy 
force and moment equilibrium requirements, and it may 
be used in place of (22) for rapid convergence. 

The difficulty arising from the fact that the moment 
equilibrium requirements in (20) are satisfied only approxi- 
mately may be resolved, considering the coupling between 
membrane action and bending, in one of the following 
ways : 

1. The equilibrium algorithm as described by (29) may 
be applied to the columns of (20), starting from the first 
and always assuming that [f] in (29) stands for the third 
row submatrices. This leads to: 

r P R ~ F T ,  

- - - - - - - - - - - _ _ _ - - -  
[KM,~  = Fll GI, I H,, 

This matrix satisfies both force and moment equilibrium 
requirements, with the exception of the moment equi- 
librium requirement about the z-axis, which is satisfied 
only approximately. 

JPL TECHNICAL REPORT 32-1277 5 



2. The middle surface may be approximated by a quad- 
ratic surface such that xo = yo = 0. Using xo = yo = 0 in 
(241, one obtains 

a = O  

b = O  
(Zyai + La:) 

A 
co = 

where 

[&,I = co[PI + &[Q1 + en([RI + [RTI) (32b) 

Equations (32) satisf; both force and moment equilibrium 
requirements. 

3. Observing that e,, do, and e,  are quantities propor- 
tional with (ar),, where a designates average curvature 
and r is the radius af gyration of the base triangle, one 
may conclude that the contribution of the coupling be- 
tween membrane action and bending will vanish rapidIy 
with grid refinement. Therefore, for a11 practical purposes, 
this contribution might be ignored. Taking co = do = en 
= 0 in (32), one obtains 

Having derived various stiffness matrices for the tri- 
angulag element, the total stiffness matrices may be written 
as the sum of membrane, bending, and transverse shear 
stiffness matrices. These are as follows: 

For the general curved element with membrane- 
bending coupling: 

For the special curved element with membrane- 
bending coupling: 

For the flat element : 

Eq. (36) is the same as the equation given in Ref. (l), with 
some differences which will be discussed in Section IV. 
All these matrices are symmetric and satisfy both force 
and moment equilibrium requirements. They are exam- 
ined closely in Section 111. 

The curvatures of the middle surface are really taken 
into account at the time of assembling the stiffness mat- 
rices of the neighboring elements. Just before assembly, 
each elemental stiffness matrix is expressed in a common 
eoordinate system, which may differ from node to node. 
An element, its local coordinate system, and the coordinate 
systems at the nodes are shown in Fig. 2. 

f ”  f Y 3  

*2 

Fig. 2. local and nodal coordinate systems 
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Expressing the nodal deflections and forces in the nodal 
coordinate systems, the elemental stiffness matrix in nodal 
coordinate systems becomes 

where [A] is the diagonal matrix of eigenvalues and [XI 
is the matrix of associated eigenvectors. 

Substituting (39) into (38), 

where [K] designates [Ki], i = 1, 2, 3, and [Q] is the 
coordinate transformation matrix which contains the 
direction cosines of nodal coordinate axes in the local 
coordinate system. The direction cosines, when coupled 
with the distances between the nodes, implicitly express 
the average normal and geodesic curvatures of the middle 
surface. When the stiffness matrices of each element on 
the shell are expressed as (37), they can be assembled 
directly, as if they are the elemental stiffness matrices 
of a plate expressed in an overall coordinate system. 
In Section VIII, the manner in which the curvatures are 
handled is discussed further. 

111. Close Examination of Element Stiffness 
Matrices 

Not all of the matrices given in the previous section 
are direct results of the Ritz procedure with linear deflec- 
tion fields. Several times, certain deflection components 
have been deliberately excluded from strain energy ex- 
pressions for rapid convergence. When the stiffness mat- 
rices were so obtained, the condition that the columns 
should satisfy the force ,and moment equilibrium require- 
ments was used to compensate the deliberate exclusions. 
The equilibrium condition is a practically important one; 
e.g., an overall stiffness matrix associated with a free-free 
structure and composed of elemental matrices violating 
the equilibrium requirements will have nonzero vibration 
frequencies for rigid body modes. Although the equi- 
librium device looks attractive, it may remove the posi- 
tiveness of the problem as the elemental geometry 
changes. It is this point that justly motivated the close 
examination of the elemental stiffness matrices of the 
previous section. 

The matrices presented in the previous section are all 
symmetric and satisfy the equilibrium requirements. Let 
[K] represent any of these matrices and U represent the 
strain energy associated with this matrix. Then 

1 
2 U = - [dT] [K] (d} 

where (d} is of order 15 and is as defined previously. 
Since [K] is real and symmetric, it can be diagonalized. 

(39) 

and defining 

as generalized deflections, one finally obtains 

Being energy, U is a positive quantity. Therefore, the 
diagonal matrix [A] can only have positive and zero diag- 
onal elements. Negative values in the diagonal are the 
signs of nonpositive behavior. A discretization which 
causes nonpositive representations is dangerous as well as 
theoretically unsound. Negative eigenvalues will cause 
absurd results when the associated eigenvectors are ex- 
cited by the loads. Since the columns of [K] satisfy, in 
general, five equilibrium conditions (the sixth condition, 
the moment equilibrium about the x-axis, is not important 
in the linear thin shell theory), the rank of [K], and 
consequently that of [A], cannot be larger than ten 
(15 - 5 = 10). This implies that at least five boundary 
conditions should be imposed on [K] in order to make it 
positive definite (the case when all of the diagonal ele- 
ments of the [A] are positive). 

In order to find out if the use of the equilibrium condi- 
tion could remove the positiveness of K matrices derived 
previously with changing geometry, a base triangle with 
nodal coordinates (0, 0, 0), (0, 4, 0) and (x3, 4, 0), for the 
first, second, and third nodes, respectively, in an (xyx) 
system located at node 1, is considered. The associated 
triangular shell element is assumed to be of thickness 
t = 1 in. and to be made of an homogeneous isotropic 
material of Young's modulus 10.67 lo6 psi and Poisson's 
ratio of 1/3. Point 0, of the middle surface (see Fig. lb) 
is assumed to have coordinates xo, yo, and z, in the local 
coordinate system of the element (i.e., the system at the 
centroid of the base triangle). 

JPL TECHNICAL REPORT 32- I21 7 7 



numerically diagonalized by means of successive rota- 
tions. The results are presented in Figs. 3 to 10. The study 
of these figures indicates the following: 

(1) Flat or curved bending stiihess matrix (21) is always 
positive and of rank 3 regardless of the shape of the 
base triangle (Fig. 4). 

3.2 I I I 
NUMBERS ATTACHED TO DATA I 

DATA POINTS ARE LABELS 
OF NONZERO EIGENVALUES 

0 
3 4 5 

x,-VALUES X 3  - VALUES 

Fig. 3. Variation of eigenvalues of membrane stiffness 
matrix (331 with'geometry ( x o  = yo = zo = 0) 

Fig. 5. Variation of eigenvalues of transverse shear 
stiffness matrix (28) with geometry 

2 3 4 5 

X3 - VALUES 

Fig. 4. Variation of eigenvalues of bending 
stiffness matrix (21) with geometry 

2 3 4 5 

X 3  - VALUES 

Fig. 6. Variation of eigenvalues of total stiffness 
matrix (36) with geometry 
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W 
3 _i 

z 
W 

W 
52 
X 

2 
IC 
I 

0 
0 0. I 0.2 0.3 

z0 -VALUES 

Fig. 7. Variation of eigenvalues of membrane stiffness 
matrix (321 with zo(xo = yo = 0 and 

triangle is not 'obtuse) 

2.4 I I 
NUMBERS ATTACHED TO I 
DATA POINTS ARE LABELS 
OF NONZERO EIGENVALUES 

2.0 I 1. I 
()I I 

6 
0.40 d Y 

0 
0 0.1 0.2 0.3 

z0 -VALUES 

Fig. 8. Variation of eigenvalues of total stiffness 
matrix (351 with zo(xo = yo = 0 and 

triangle is  not obtuse) 

DATA POINTS ARE LABELS 

6 

W 
3 
2 z 
W 

W 
0 

X 

2 
IC 
I 

- I  0 

Xo -VALUES 

I 

Fig. 9. Variation of eigenvalues of membrane stiffness 
matrix (301 with xo(yo = 0, zo prescribed, 

and triangle i s  not obtuse) 

Fig. 10. Variation of eigenvalues of total stiffness 
matrix (34) with xo(yo = 0, zo prescribed, 

and triangle i s  not obtuse) 
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rank is 3 in (28) and 9 in (36) if the triangle is not a 
right triangle, in which case (28) is of rank 2 and 
(36) is of rank 8 (Figs. 5 and 6). 

Special curved element membrane stiffness matrix 
(32) and total matrix (35) are always positive when 
the triangle is not obtuse; (32) is of rank 6 and (35) 
is of rank 9 (Figs. 7 and 8). 

General curved element membrane and total stiff- 
ness matrices (30) and (34) are not positive unless 
xo = yo = 0 (Figs. 9 and 10). 

Shear stiffness matrix (26) is always positive and of 
rank 2, regardless of the shape of the base triangle 
(see Fig. 11). 

The following is common for all cases: 

(1) The spectrum width of eigenvalues (i.e., the differ- 
ence between the highest and lowest eigenvalues) 
increases as the base triangle changes from isosceles 
to obtuse triangle. 

(2) The spectrum width of eigenvalues increases with 
increasing average curvatures (i.e., with 2,). 

(3) The spectrum width of eigenvalues increases with 
the distance from 0, to centroid (Fig. Ib). 

NUMBERS ATTACHED 
TO DATA POINTS ARE 
LABELS OF NONZERO 
EIGENVALUES 

0 
2 3 4 5 

X, - VALUES 

Fig. 11. Variation of eigenvalues of base 
shear matrix (26) with geometry 

(4) Eigenvalues associated with bending modes are 
about one order of magnitude smaller than those 
associated with pure stretching and transverse shear 
modes. 

This study clearly indicates that matrices which are 
obtained directly by piecewise linear fields are positive 
regardless of the geometry. However, those obtained with 
the help of the equilibrium algorithm may not be positive 
as the geometry changes. 

Further investigations indicated that, rather than the 
equilibrium algorithm per se, the base matrix, e.g., [S,,] 
in (28), to which the equilibrium algorithm is applied is 
the starting point of the nonpositive behavior. It is ob- 
served that the equilibrium algorithm, when applied to 
base matrices with positive diagonal and nonpositive off- 
diagonal elements, always yields positive matrices. How- 
ever when an off-diagonal element in the base matrix 
becomes positive, the equilibrium algorithm produces a 
nonpositive matrix. It can be shown that [S,,] in (28) will 
always have a positive off-diagonal element when the 
triangle is obtuse. 

IV. Proposed Improvements 

The examination of the eigenvalues has shown that the 
stiffness matrices which are developed with the help of 
equilibrium conditions may display nonpositive behavior 
depending upon the geometry. Transverse shear stiffness 
matrix (28) is not positive when the base triangle is 
obtuse, and the general curved element membrane matrix 
(30) is positive only if x, = yo = 0. A representation, 
which may yield a nonpositive matrix, is not satisfactory. 

In Section 111, it was indicated that the nonpositive 
behavior originates from the base matrix (e.g., [S,,], 
IF,,], [G,,] ,  [H,,]) to which the equilibrium algorithm 
is applied. Actually, these base matrices are obtained 
directly by integrating and then differentiating the strain 
energy expressions. Unless these base matrices are modi- 
fied somehow, there is no way of preventing the above- 
mentioned nonpositive behaviors, if one is to use the 
equilibrium algorithm. Of course, there is always the pos- 
sibility of discarding these nonpositive behaviors by care- 
ful triangulation of the middle surface. 

In this section, two methods of improvement for the 
base matrix, the absolute value scheme and the constant 
trace scheme, are proposed to insure safe computation 
even in casually chosen grid configurations. These schemes 
involve arbitrary modification of base matrices when a 
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positive off-diagonal is encountered. Since very low energy 
is associated with the matrices generated from the base 
matrices, such modifications are justified. Later in the 
section, another method, the average rotations algorithm, 
is proposed, in which the coupling between membrane 
action and bending is ignored and the transverse shear 
stiffness matrix is generated without the help of equ?ib- 
rium algorithm. These methods are described below. 

A. Absolute Value Scheme 

A well-behaved base matrix is in the following form: 

--a 

-C b + c  

where a, b, and c are nonnegative. If the equilibrium 
algorithm is applied to this base matrix, it produces a 
positive matrix. Matrix (43) is the form of [S,,] when the 
triangle is not obtuse. It causes nonpositiveness if one of 
the off-diagonal elements is positive: 

a + ( - b )  --a 

a + c  

-(-i) -c ( - b ) + c  

which is the form of [S,,] when the triangle is obtuse. 
The absolute value scheme simply is to change the sign of 
the positive off-diagonal element to negative, i.e., to re- 
place -( -b)  with -( ] - b ] ). When applied to (44), this 
scheme yields (43). Note that the scheme produces (43), 
if applied to (43). 

The absolute value scheme arbitrarily alters material 
orthotropy or curvatures, depending upon whether the 
base matrix represents shear or membrane action. How- 
ever, it is justified because of the low energy associated 
with respective matrices. Figure 12 shows the behaviors 
of transverse shear stiffness matrix (28) and the flat ele- 
ment stiffness matrix (36), respectively, after the absolute 
value scheme. Comparing this figure with Figs. 5 and 6, 
one observes that no negative eigenvalues develop in this 
scheme. 

By taking the absolute values of the spar beam areas, 
Melosh (Ref. 1) has used this scheme in his triangular 
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Fig. 12. Variation of eigenvalues with geometry, after 
absolute value scheme: (a) Transverse shear 

stiffness matrix (281; (bl Total stiffness 
matrix (361 (xo = yo = zo = 01 

facet element. If the absolute value signs are removed, 
Eqs. (7) and (8) of Ref. 1 are identical with (28). 

B. Constant Trace Scheme 

This scheme, when a positive off-diagonal exists, alters 
the base matrix such that its trace does not change. It 
consists of nullifying the positive off -diagonal element and 
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adjusting the others accordingly. When applied to (44), it 
yields : 

Note that the traces of (44) and (45) are both equal to 
2a 3 2c - 2b. 

This scheme, like the absolute value scheme, arbitrarily 
changes material orthotropies and element curvatures. 
However, it is justified because of the low energy asso- 
ciated with the respective matrices. Figures 13a and 13b 
show the behaviors of transverse shear matrix (28) and the 
flat element total stiffness matrix (36), respectively, after 
the constant trace scheme. Comparing these figures with 
Figs. 5 and 6, one observes that no negative eigenvalue 
develops in this scheme. 

C. Average Rotations Algorithm 

The algorithm presented here is an attempt to generate 
the transverse shear stiffness matrix without the help of 
equilibrium conditions. The advantage envisioned is the 
elimination of the arbitrariness involved in the absolute 
value and the constant trace schemes. It will be shown in 
the next section that this algorithm, although theoretically 
more sound, has poorer convergence characteristics than 
those of the equilibrium algorithms. 

In Section 11, it was mentioned that the transverse 
shear stiffness matrix (22) causes maximizing sequences 
for the total strain energy which are of very slow con- 
vergence. This is because of the fact that, in (13), the 
contributions of rotations e, and 0, vary linearly in the tri- 
angle, whereas those of w are constant. As the grid size 
gets smaller, only the contributions of average rotations 
remain, and those of linearly varying terms rapidly di- 
minish. This suggests that, in (13), one may use average 
rotations in place of the total linear rotations field of the 
triangle. When implemented, this yields: 

2.4 

2.0 

I .6 

1.2 

0.8 

0.4 
w 
2 

(a) VARIATION IN TRANSVERSE 
SHEAR STIFFNESS 
MATRIX (EQUILIBRIUM 

2 3 4 5 
x - VALUES 

Fig. 13. Variation of eigenvalues with geometry, after 
constant trace scheme: (a) Transverse shear 

stiffness matrix (28); (bl Total stiffness 
matrix (36) (xo = yo = zo = 0)  

where 

[J] =- ?[; 1 

0 0 'I 
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Using (46) in (4) and differentiating yields 

t 
4A 
- 

(47) 

where 

In order to obtain the total stiffness matrix, one may 
use (47), (21), and (33) in (25). 

Note that (33) is used as the membrane stiffness matrix to 
avoid the use of the equilibrium algorithm. Matrices (47) 
and (48) satisfy all equ'ilibrium requirements. 

Figures (14) and (15) show the behaviors of (47) and (48), 
respectively. As observed from these figures, [Ks2] and 
[K4] are always positive and of rank 2 and 8, respectively. 

V. Comparison of Methods of Improvement 

In this section the methods of improvement proposed in 
the previous section are compared. First, to demonstrate 
the adverse effects of casual triangulation when (36) is 
used, a plate problem is solved with various triangulations. 
A clamped square plate 48 in. long and 1 in. thick and 
subjected to a central transverse concentrated load of 10 lb 
is taken. The plate material has a Young's modulus of 
10.6 X lo6 psi and a Poisson ratio of 35. Using the sym- 
metry of the solution, only % of the plate is considered. 
On the middle plane of % plate, 28 nodes are used, 18 on 
the boundary and 10 inside. By keeping the locations 
of the boundary nodes constant, varying the locations of 
internal nodes, and randomly joining neighboring nodes, 
about 200 different triangulations are generated. The 
solution for each case is obtained by using (36) without 
any of the improvement schemes. 
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Fig. 14. Variation of eigenvalues of transverse shear 
stiffness matrix (47) with geometry 
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Figure. 15. Variation of eigenvalues of total stiffness 
matrix (48) with geometry (x ,  = yo = zo = 0) 

It was observed that the deflections did not vary more 
than 5% unless there were more than two obtuse triangles 
in the system, in which case patently ridiculous results 
for a structural problem were obtained. Figure 16 shows 
two of these solutions and associated triangulations. Note 
that when obtuse triangles exist, the computed deflections 

JPL TECHNlCAL REPORT 32-121 7 13 



r' 
I-- z 
W 

.- 

5 
0 

J 
a 
n 
52 n 
W 
v) 
LT 
W > 
v) z 
a 
I- 

X 
d 

a 

0 

1.50 I 

-1.5 
0 4 8 12 16 20 24 

X -VALUES 

Fig. 16. Effect of triangulation on the solution by (361 
(centrally loaded clamped square plate) 

I 

are in opposite direction with the load, which is a concrete 
indication of nonpositive behavior. 

Figures 17 and 18 show the transverse displacements 
obtained for the same case of obtuse triangulation, after 
the absolute value and the constant trace schemes, respec- 
tively. The improvement is obvious. A discussion as to 
which of the two schemes is better follows. 

Comparing Figs. 12a and 13a, it may be observed that 
the spectrum width of eigenvalues is larger in the absolute 
value scheme than it is in the constant trace scheme. The 
same is observable in Figs. 12b and 13b. Since in the plate 
problem the bending modes are dominant, the behavior of 
small eigenvalues of the total stiffness matrix (associated 
with the bending modes as observed in Section 111) is 
more important than the spectrum width. Comparison of 
Figs. 12b and 13b indicates that the bending eigenvalues 
of Fig. 13b are smaller and one less in number than those 
of Fig. 12b. Referring to (42), this observation implies that 
the constant trace scheme will yield larger deflections than 
the absolute value scheme. This conclusion is observable 
from Figs. 17 and 18. 

In Fig. 19, a comparison is made of the convergence 
rates of maximizing sequences, as obtained by the equi- 
librium (36) and the average rotations (48) algorithms for 
the clamped plate problem. The triangulation of % plate 
is such that the nodes are uniformly distributed over the 
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Fig. 17. Transverse displacements of centrally loaded 
clamped square plate along +x-axis, a s  obtained 

by using (361, after the absolute value scheme 

1.50 I 

x -VALUES 

Fig. 18. Transverse displacements of centrally loaded 
clamped square plate along x-axis, a s  obtained 

by using (361, after the constant trace scheme 

middle plane. This triangulation is used for both cases. 
Figure 19 shows that the average rotations algorithm, 
although theoretically more appealing, yields a maximiz- 
ing sequence which is of much slower convergence than 
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Fig. 19. Comparison of convergence rates of equilibrium 
and average rotations algorithms (central transverse 
displacement of centrally loaded clamped square plate) 

that of the equilibrium algorithm. A discussion of this 
follows. 

Comparing Figs. 13a and 14, one sees that the spectrum 
width of eigenvalues is smaller in (47) than in (28). The 
same is observable for (48) and (36) from Figs. 13b and 15, 
respectively. However, the bending eigenvalues of (36) 
are smaller than those of (48). This indicates that (28), 
when superimposed on (21)) lowers the eigenvalues of 
(21). This coupling only weakly materializes when (47) is 
superimposed on (21). Referring to (42), this observation 
explains the slow convergence characteristics of (48). 

A theoretically more appealing matrix for shells is prob- 
ably the one given by (35), which may be used without 
any of the improvement schemes, provided that the obtuse 
triangles are avoided. However, (35) requires one more 
piece of data, zo than required by (36). The comparison 
of solutions with (35) and (36) indicated that not much is 
gained by taking the curvatures in the element. 

Matrix (34) is probably the hardest to generate, since it 
requires three pieces of additional data (x0, yo, and z,) and 
necessitates the use of one of the improvement schemes 
even if the triangulation avoids obtuse triangles. 

The convergence characteristics of (36) without any 
improvement scheme is studied by using nonobtuse tri- 
angulation. The results are summarized in Figs. 20-23. 
In these figures. the data points have been joined by 
straight lines. Figure 20 studies the convergence of the 
maximizing sequence in the clamped plate problem, which 
was described previously. In the triangulation, the nodes 
are uniformly distributed in the middle plane. As observed 
from the figure, the convergence is rapid and monotonic. 

The convergence phenomenon is also studied in a 
clamped spherical cap for pressure loading in Fig. 21, and 
for a central transverse concentrated load in Figs. 22 and 
23. Uniform grids were used for the cases presented in 
Figs. 21 and 22. The case presented in Fig. 23 uses a grid 
which gets uniformly coarser away from the concentrated 
force. The spherical cap problem was first solved for a 
60-deg slice, assigning each node 3 degrees of freedom. 
Later, the condition that nodal deflections of a parallel are 
identical was imposed on the overall stiffness matrix be- 
fore inversion, and the solution was completed for the 
same 60-deg slice. These two solutions indicated that 
the latter requires very short computer time and the 
results are not disturbed at all by the roundoff errors. The 
results presented in Figs. 21, 22, and 23 were obtained 

VI. Suggested Matrix and Convergence 
Characteristics 

In the previous sections, five representations-(25), (34), 
(35), (36), and (48)-and two improvement schemes are 
given for the triangular shell element. All these matrices 
satisfy the equilibrium requirements; they are symmetric 
and positive, and they are all geomety-insensitive if one 
of the improvement schemes is used. 

The study in Section V indicates that the constant trace 
scheme is superior to the absolute value scheme, and the 
matrices generated with the help of equilibrium, i.e., (34), 
(35), and (36), have much better convergence character- 
istics than those generated without this help, i.e., (25) and 
(47). Matrix (25) is the worst one as far as convergence is 
concerned. Among these matrices, the one which may be 
obtained by (36) and the absolute value scheme is the 
matrix reported in Ref. (1). 

Among the rapidly convergent representations, (36) is 
the easiest to generate. By avoiding obtuse triangles 
during the triangulation, this representation can be used 
directly without any of the improvement schemes. 

with the latter approach. 

Since it is not readily observable from Fig. 21 that the 
sequence is maximizing, the concentrated load problem 
of Figs. 22 and 23 is included. Figure 21 merely indicates 
that the sequence is monotonically converging. On the 
other hand, Fig. 22 clearly indicates that the sequence is 
a maximizing one. (Note that the central transverse dis- 
placement in Figs. 22 or 23 is a measure of total strain 
energy, and it is monotonically increasing with grid refine- 
ment. This feature does not exist in the pressure problem 
of Fig. 21.) Figure 23 is included to show that nonuniform 
grids may be used advantageously for obtaining rapidly 
changing deflection fields. 
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Fig. 24. Demonstration of the fact that deflections vary 
basically with thickness cubed; solutions by (36) 

In Fig. 24, the effect of thicknesdarea ratio is studied in 
the clamped plate problem. For the same triangulation, the 
problem was solved once for t = 1 in. and once for t=O.1 in. 
thickness. From the linear theory of plates, one knows 
that transverse displacement increases 1000 times when 
the thickness is decreased 10 times if the transverse shear 
deformations are not taken into account. The same be- 
havior may be observed from Fig. 24, if one remembers 
that the transverse shear effects are not ignored. 

VII. Analysis Guidelines 
This section discusses some guidelines to be employed 

in laying out the gridwork when the triangular shell ele- 
ment is used in the analysis of a curved surface. 

Because of the added approximation for obtuse angles, 
the analyst should avoid large-angle triangles. This can 
be easily achieved by the following rule. First, join the 
nodes to create a quadrilateral grid; then triangulate the 
quadrilaterals by the shortest diagonal. Using this rule, 
the obtuse triangle grid in Fig. 16 is reestablished in 
Fig. 25 without moving any of the nodes. Using (36) as it 
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Fig. 25. Transverse displacements of centrally loaded 
clamped square plate; solution by (36); 

triangulation with shortest diagonal 

is, the de%ections for this latter grid are obtained. The 
transverse displacements are shown in Fig. 25. The advan- 
tage of triangulation with this rule is obvious from the 
comparison of Figs. 16 and 25. 

The manner in which the analyst chooses to vary his 
node distribution will affect analysis accuracy. In general, 
the analyst should choose more nodes in regions of highly 
varying de%ections. Figure 26 shows the dramatic im- 
provement that can be obtained by using a nonuniform 
grid. This figure is produced by superimposing Figs. 22d 
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Fig. 26. Advantage of using smaller mesh size 
around the concentrated load for rapid 

convergence; solutions by 1361 
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and 23d. No attempt was made in the analysis presented 
in Fig. 23, to optimize the gridwork spacing. The figure 
does, however, demonstrate that the errors can be reduced 
by an order of magnitude by using irregular grids. 

Whenever possible, the analyst should try to use equi- 
lateral triangles. This will minimize both the truncation 
and roundoff errors. As far as the roundoff errors are con- 
cerned, this conclusion is evident, based upon the cri- 
terion that matrix conditioning is a function of the ratio 
of the maximum to minimum (nonzero) eigenvalues of 
the matrix. For each representation studied, this ratio 
increases as the largest angle in the triangle is increased 
from 60 deg. As to the discretization errors, one may refer 
to Synge (Ref. 5). 

During the analysis of the spherical cap under pressure 
(Fig. 21), a peculiar result was obtained when the con- 
vergence was examined with grid refinement. This result 
was determined to be caused by the inaccuracy of grid- 
point coordinates. Figure 27 shows the accuracy for the 
analyses for 4- and 7-digit grid-point coordinate accuracy. 
This result indicates that if successive refinement is used 
for extrapolation, the analyst must exercise care in defining 
his structural geometry to ensure the validity of extrapola- 
tion. 

tion 11, the contribution of curvatures in the element is pro- 
portional to (grid-sizehadius-of-curvature) ratio, which 
diminishes rapidly with grid refinement. Figure 27 verifies 
that the curvatures are actually accounted for by the 
differences in the orientations of the neighboring elements. 
The increasing oscillations in the 4-digit accuracy solu- 
tion show that, when the nodes are too close to each 
other, the curvatures (quantities related with the second 
differences of nodal coordinates) require higher accuracy 
in the nodal coordinates if (37) is to be used before the 
assembly. This difEculty may be eliminated by expressing 
(37) directly in terms of the curvatures provided at the 
nodes. This task is outside of the scope of this paper. 

IX. Summary of Significant Developments 

follows : 
The developments presented herein are summarized as 

(1) The derivation of several stiffness matrices for tri- 
angular shell element is reviewed. 

(2) By studying the eigenvalues, it is shown that stiff- 
ness matrices produced with the help of equilibrium 
requirements may display nonpositive behavior. 
The grave consequences of nonpositive behavior are 
demonstrated. 

e 0.040 

F 0.036 

W nonpositive behavior. 
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i 0.024 

W u 0.020 

(3) Two schemes (one of which was proposed by Melosh 
(Ref. 1) previously) are presented to correct the 

.- 
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5 0.032 
0 

(4) It is demonstrated that the equilibrium algorithm 
can be used to accelerate the convergence. 0028 - 

n WITH 4-DIGIT 

(5) The fact is demonstrated that the stiffness matrices 
associated with polyhedral deflection fields produce 
maximizing sequences for the total strain energy 

F 

> 
0.016 

3 8 13 18 with grid refinement. 
NUMBER OF NODES ON MERIDIAN 

(6) It is shown that the curvatures in the element cm- 
tribute very little to the computed deflections, even 
in the reasonably crude grids. 

Fig. 27. Effect of accuracy in nodal coordinates on the 
solution; variation of central transverse displacement 

with grid refinement in clamped spherical cap 
subjected to pressure; solutions by (36) (7) The effect of thicknesdarea ratio is demonstrated. 

(8) Guidelines are presented for the use of triangular 
shell element in structural analyses. VIII. How the Curvatures Are Accounted For 

In Section VI, it was mentioned that the curvatures in 
the element contribute very little to the computed deflec- 
tions. Actually, the cases presented in Figs. 21, 22, and 23 
were first analyzed (Ref. 2) with (35). The results of these 
analyses, when compared with those presented in Figs. 21, 
22, and 23, verify this statement. As discussed in Sec- 

(9) The way that the curvatures are taken into account 
is discussed. 

Results presented in Figs. 16-27 were obtained by 
means of the ELAS general purpose program of the Jet 
Propulsion Laboratory. 
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